4.5 ESPACIO VECTORIAL CON PRODUCTO INTERNO Y SUS PROPIEDADES.

Producto Interno:

Un producto interno sobre un espacio vectorial V es una operación que asigna a cada par de vectores u y v en V un número real <u, v>.
Un producto interior sobre V es una función que asocia un número real ‹u, v› con cada par de vectores u y v cumple los siguientes axiomas:
Propiedades:

i. (v, v) ≥ 0
ii. (v, v) = 0 si y sólo si v = 0.
iii, (u, v +w) = (u, v)+ (u, w)
iv. (u + v, w) = (u, w)+(v, w)
v. (u, v) = (v, u)
vi. (αu, v) = α(u, v)
vii. (u, αv) = α(u, v)
Espacios con producto interior:
El producto interior euclidiano es solo uno más de los productos internos que se tiene que definir en Rn Para distinguir entre el producto interno normal y otros posibles productos internos se usa la siguiente notación.
u ●v = producto punto (producto interior euclidiano para Rn)
‹u, v› = producto interno general para espacio vectorial V.

Propiedades de los productos interiores:
1. ‹0, v› = ‹v, 0› = 0
2. ‹u + v, w› = ‹u, w› + ‹v, w›
3. ‹u, cv› = c‹u, v›.
Un espacio vectorial con producto interno se denomina espacio con producto interno.

No hay comentarios:

Publicar un comentario