1.2 OPERACIONES FUNDAMENTALES CON NUMEROS COMPLEJOS

1.2 Operaciones fundamentales con números complejos.
Varias propiedades de la suma y del producto de números complejos coinciden con las de los números reales. Recogeremos aquí las más básicas y verificamos algunas de ellas.
Las leyes conmitativas
z1 + z2= z2 + z1,    z1z2 = z2z1                                                                                                                                   
y las asociativas
(z1 + z2) + z3 = z1 + (z2 + z3),    (z1z2)z3 = z1(z2z3)                                                                                                                    
se siguen fácilmente de las definiciones de la suma y el producto de números complejos, y del hecho de que los números reales las satisfacen. Por ejemplo, si
z1 = (x1, y1)   y   z2 = (x2, y2),
entonces
z1 + z2 = (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) = (x2 + x1, y2 + y1) = (x2, y2) + (x1, y1) = z2 + z1
La verificación de las restantes, así como de la ley distributiva
z(z1 + z2) = zz1 + zz2,es similar.

De acuerdo con la ley conmutativa del producto, iy = yi; luego está permitido escribir
z = x + iy   o   z = x + yi
Además, por las leyes asociativas, una suma z1 + z2 + z3 o un producto z1z2z3 están bien definidos sin paréntesis, igual que ocurría con los números reales.
La identidad aditiva 0 = (0, 0) y la idenidad multiplicativa 1 = (1, 0) de los números reales se transfieren al sistema de los números complejos. O sea,
z + 0 = z   y   z * 1 = z                                                                                                                                
para todo número complejo z. Más aún, 0 y 1 son los únicos números complejos con tales propiedades. Para establecer la unicidad de 0, supongamos que (u, v) es una identidad aditiva, y escribamos
(x, y) + (u, v) = (x, y),
donde (x, y) es cualquier número complejo. Se deduce que
x + u = x   e   y + v = y;
o sea, u = 0 y v = 0. El número complejo 0 = (0, 0) es, por tanto, la única identidad aditiva.
Cada número complejo z = (x, y) tiene asociado un inverso aditivo
-z = (-x, -y)                                                                                                                                                   
que satisface la ecuación z + (-z) = 0. Además, hay un sólo inverso aditivo para cada z, pues la ecuación (x, y) + (u, v) = (0,0) implica que u = -x v = -y.
Los inversos aditivos se usan para definir la resta:
z1 - z2 = z1 + (-z2).
Luego si z1 = (x1, y1) y z2 = (x2, y2), entonces
z1 - z2 = (x1 - x2, y1 - y2) = (x1 - x2) + i(y1 - y2).
Análogamente, para todo número complejo z = (x, y) no nulo, existe un número complejo z-1 tal que zz-1 = 1. Este inverso multiplicativo es menos obvio que el aditivo. Para hallarlo, buscamos números reales u, v expresados en términos de x e y, tales que
(x, y)(u, v) = (1,0).


No hay comentarios:

Publicar un comentario